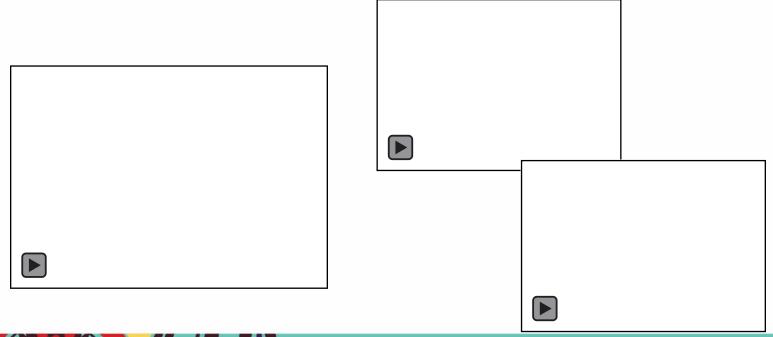
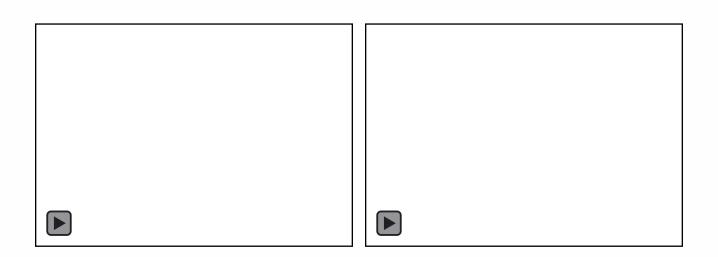
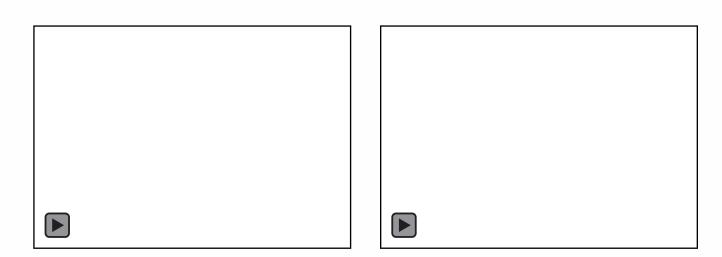

Case Presentation 1

55 yow presented to outside hospital with SOB and near-syncope. Unwitnessed event with exertion, and without prodrome. Denied prior dizziness, palpitations or syncope.

- Chest CT for PE revealed RV mass.
- PMHx: "childhood murmur", vertigo
- Meds, SHx, FHx: unremarkable.
- PE: 106/60, 72 no orthostatic changes, no murmur at rest or with maneuvers.


ECG: RAD, RVH, RBBB


ECHOCARDIOGRAM


ECHOCARDIOGRAM

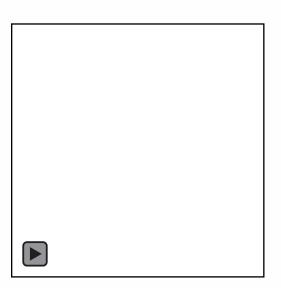
ECHOCARDIOGRAM

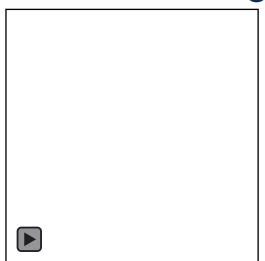
Invading RV apical myocardium and pericardium?

What would you do next?

- 1. More imaging:
 - Cardiac CT
 - TEE
 - MRI
 - PET
 - Coronary angiogram
- 2. Endomyocardial Biopsy?
- 3. Call a surgeon

Differential Diagnosis Matters


Cardiac Masses


- Primary Tumors:
 - Benign:
 - Myxoma, fibroelastoma (intracardiac)
 - Lipoma, fibroma, rhabdomyomas (children TS)
 - Malignant:
 - Sarcoma (angiosarcoma), lymphoma
- Metastatic cardiac involvement
- Thrombus
- Infection
- HCM variant?
 - Is this the cause of her childhood heart murmur?

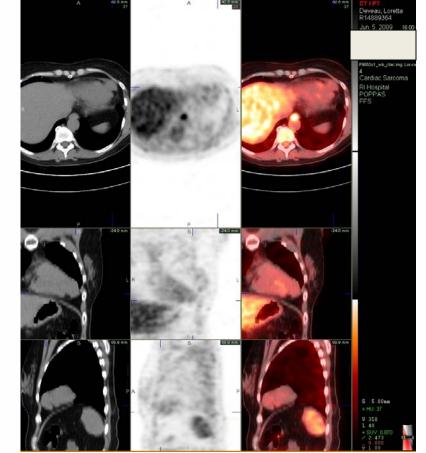
Cardiac MRI

Pre-gadolinium injection

Post-gadolinium injection

Avid enhancement (vascular), but uniform and no necrosis, isointense to muscle

Endomyocardial biopsy


Three samples from RV septum
 Normal endocardium

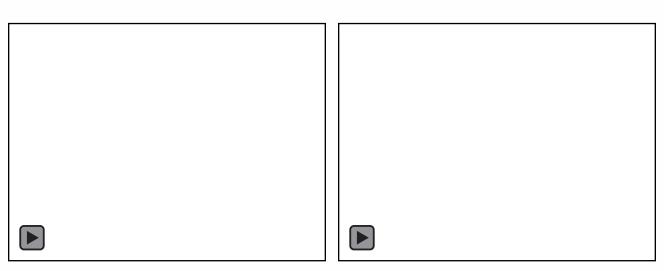
PET without FDG uptake: not malignant

No evidence of metastatic

Preoperative Angiogram

Tumor blush from LAD septal perforators

Intraoperative TEE


Transgastric 90 RV

transgastric 120 RV, 3 papillary muscles

Intraoperative TEE


Deep Transgastric RV, nml TV

Transgastric SAX RV

Postop Echoes

Intraoperative, post CPB TEE

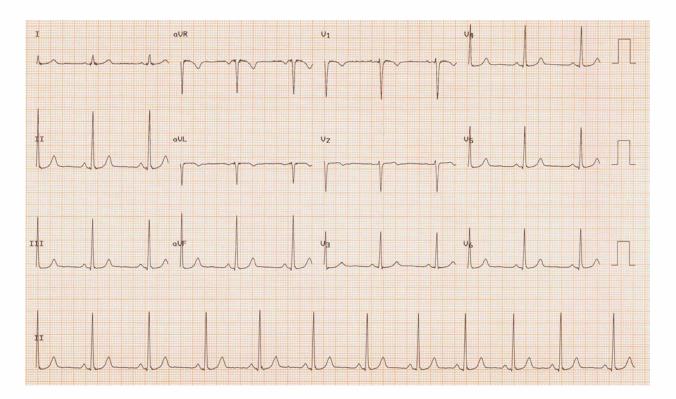
Postoperative day 7 TTE

Intraoperative Pathology

Diagnosis: spindle cell tumor Benign Fibroma

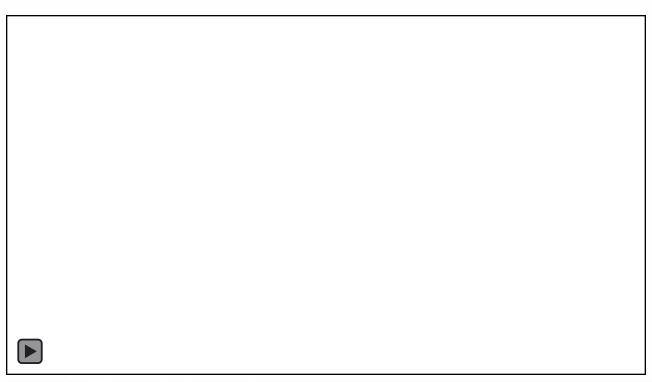
Take home messages

- 1. More imaging: To define extent and etiology
 - Cardiac CT
 - TEE
 - MRI
 - PET
 - Coronary angiogram
- 2. Endomyocardial Biopsy
- 3. Surgery: careful planning by the heart team


Case presentation II

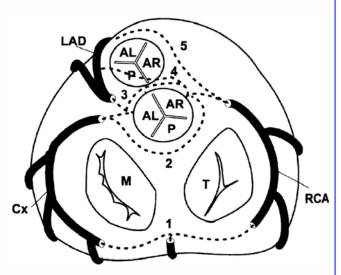
- 18yow with exertional chest pain and syncope presents at 38 weeks gestation.
 - Age 17 ED visit for same
 - echo report "possible anomalous coronary"
- PE: BMI 35, 110/60 and equal, HR 90
 - CV: 1/6 SEM, normal S2, no S3
 - Lungs are clear
 - Abdomen gravid
 - Extremities pulses equal 2+ no edema
- ECG:

ECG


Question I:

What would you do next?

- 1. Repeat the echo
- 2. CT angio
- 3. Cardiac catheterization
- 4. MRI
- 5. Deliver the baby



Anomalous Aortic Origin of Coronary Artery: AAOCA

Angelini Circ. 2007;115:1296-1305

- LM/LAD from right sinus
- RCA from left sinus
 - Course between AO and PA may result in compression with ischemia/SCD
 - Incidence 0.1-0.3% births
- Registry of SCD athletes
 - 2nd most common,13% of 286
- SCD in military recruits
 - Most common etiology
 - JACC 2003;41:974
 - Ann Int Med 2004;141:829.
- Low SCD if asymptomatic
 - JACC 2007;50:2083

Estimated fetal and maternal effective doses of diagnostic and interventional radiology procedures

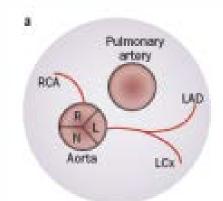
Procedure	Fetal exposure		Maternal exposure	
Chest radiograph (PA and lateral)	<0.01 mGy	<0.01 mSv	0.1 mGy	0.1 mSv
CT chest	0.3 mGy	0.3 mSv	7 mGy	7 mSv
Coronary angiography ^a	1.5 mGy	1.5 mSv	7 mGy	7 mSv
PCI or radiofrequency catheter ablation ^a	3 mGy	3 mSv	15 mGy	15 mSv

ESC Guidelines Helpful

Echocardiography should be performed in any pregnant patient with unexplained or new cardiovascular signs or symptoms.	1	С
MRI (without gadolinium) should be considered if echocardiography is insufficient for diagnosis.	lla	С
A chest radiograph, with shielding of the fetus, may be considered if other methods are not successful in clarifying the cause of dyspnoea.	ПЬ	С
Cardiac catheterization may be considered with very strict indications, timing, and shielding of the fetus.	IIb	U
CT and electrophysiological studies, with shielding of the fetus, may be considered in selected patients for vital indications.	IIb	U
Coronary bypass surgery or valvular surgery may be considered when conservative and medical therapy has failed, in situations that threaten the mother's life and that are not amenable to percutaneous treatment.	IIb	С

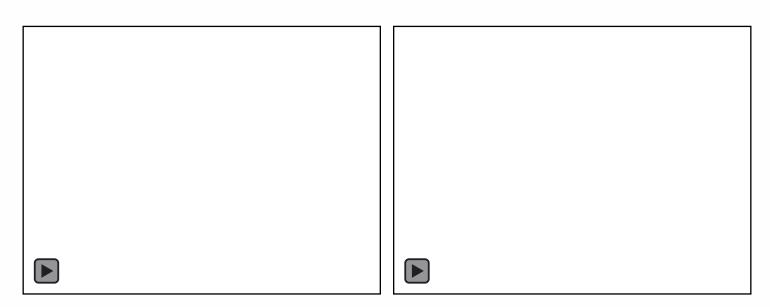
Balance risk to mother of NOT doing the test

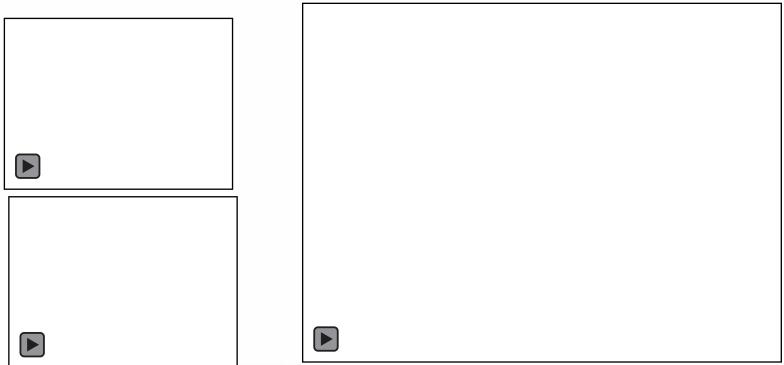
Treatment Plan

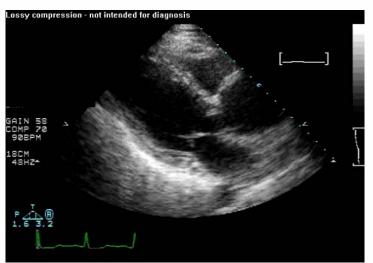

- Initiate betablocker
- Admit to hospital
- Proceed with induction of labor
- Pain management with epidural
- Early referral to congenital heart surgeon

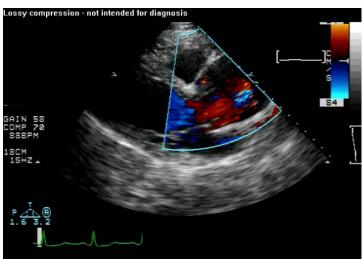
Take Home Points

- Anomalous Coronaries:
 - Course and symptoms
 - Echo and CT both
- CT scan is safe in pregnancy
 - care for two
- Team approach with expertise
 - L&D hemodynamically labile

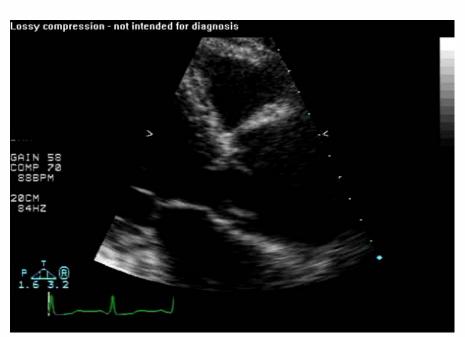


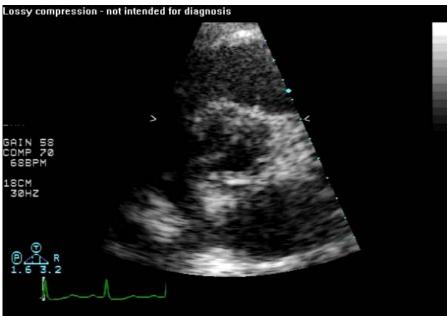

CASE III: What is the etiology of the AI?


Trauma with avulsion of AV at annulus

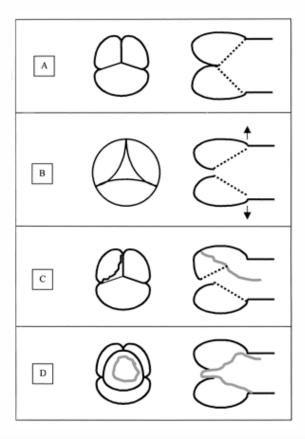


Aortic dissection and severe AV





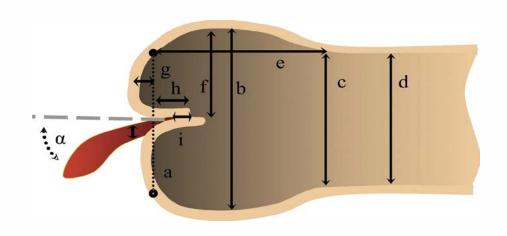
Dissection flap prolapsing across AV



TEE in Dissection: Repair or Replace

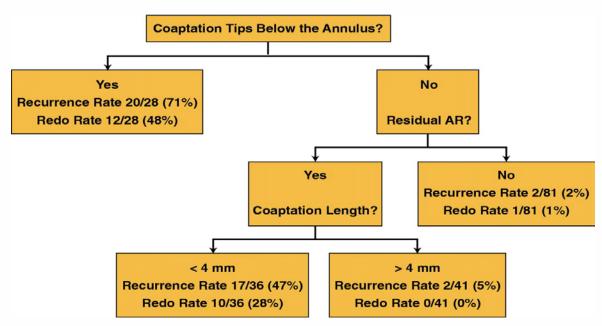
- A. Normal AV
 - Leaflet tips coapt
 - STJ = annulus
- B. Incomplete closure
 - Dilated STJ
- C. Leaflet prolapse
 - Leaflet attachment disrupted
- D. Dissection Flap prolapse
 - Nml AV leaflets

Movosowitz HD et al. JACC 2000;36:884



TEE to guide in the OR: Repair or Replace?

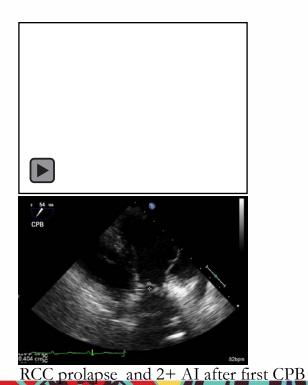
	With the Cox Multivariate Analysis					
Multivariate Analysis	HR	95% Confidence Interval	Cox p Value			
Coaptation length	0.82	0.63-1.00	0.05			
Tips below the level of the aortic annulus	7.9	6.52–9.28	<0.01			
Diameter of aortic annulus	1.18	1.03-2.45	0.01			
Residual AR	5.3	1.47-6.57	0.01			



Schematic Representation of the TEE Measurements

le Polain de Waroux, J.-B. et al. J Am Coll Cardiol Img 2009;2:931-939

Risk of AV Repair Failure According to immediate postop TEE



le Polain de Waroux, J.-B. et al. J Am Coll Cardiol Img 2009;2:931-939

Assess after root replacement/valve repair

No prolapse or AI after rerepair

Surgical Classification of Al

- Similar to Carpentier for MV disease
 - Functional classification to guide repair techniques...
 - » VanDyck M. Anesth Analg 2010;111:59
- TEE coorelated w/ OR inspec
 - 1. Enlarged Aorta & normal cusps
 - 2. Cusp prolapse (or fenestration): eccentric jets
 - 3. Cusp retraction (poor quality/quantity)
 - » El Khoury Circ 2007;116:1264.
- 781 chronic AI elective surgeries/5 yrs
 - 1. Central: dilation only
 - 2. Eccentric: dilation and valve
 - » Lansac E. EJCS 2008;33(5):872-878.

Classification scheme: predicted short and long term repair success

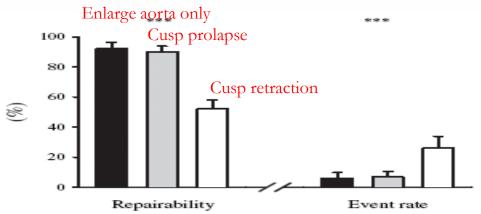
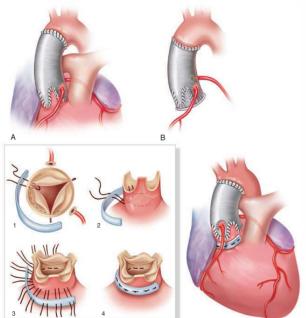


Figure 2. Incidence of valve sparing or repair surgery in the whole population (left) and event rate in patients undergoing sparing or repair surgery (right), according to anatomic classification by TEE. Closed bars, type 1; Half-tone bars, type 2; Open bars, type 3. *** χ^2 <0.001 type 3 vs type 1 and 2.

El Khoury Circ 2007;116;I264



Surgical Treatment: valve sparing aortic root replacement

A. Remodeling of root:
Replacement of sinuses

B. Reimplantation of valve: for annuloaortic ectasia

Aortic annuloplasty:
For annuloaortic ectasia

David TE: Aortic root aneurysms: Remodeling or composite replacement? Ann Thorac Surg 64:1564, 1997

Take home message

- Imaging in crucial:
 - preop to define etiology and valve structure suitability
 - intraop for successful repair
- Understand surgical approaches
 - communicate structure and function

Classification scheme: surgical techniques

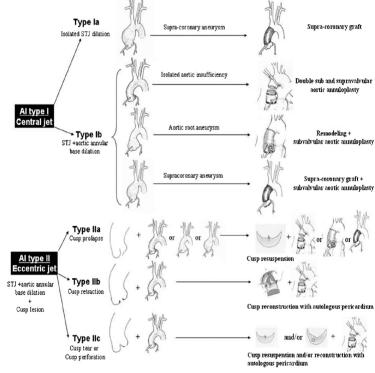


Fig. 2. Lesional classification of aortic insufficiencies (AI) and adapted surgical strategies. STJ: sino-tubular junction.

Lansac EJCS 2008;33:872-878.

